Edit Distance
关于在二维矩阵中,具体 [i-1][j]和[i][j-1]谁是delete 谁是insert,要根据你已横向字符串以基准 还是以纵向字符串为基准
因为inde从1开始,在定位string的char的时候 应该减去1,不然到最后 string会越界
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
经典dp题
dp[i][j] 表示从第一个字符串i的位置,转换到第二个字符串j位置,需要几步
时间和空间复杂度 o(n*m)
class Solution {
public int minDistance(String word1, String word2) {
if(word1.length() == 0 ){
return word2.length();
}
else if(word2.length() == 0){
return word1.length();
}
int n1 = word1.length(), n2 = word2.length();
int[][] dp = new int[n1+1][n2+1];
for(int i = 0; i <= n2;i++){
dp[0][i] = i;
}
for(int i = 0; i <= n1; i++){
dp[i][0] = i;
}
for(int i = 1; i <=n1;i++){
for(int j = 1; j <=n2 ; j++){
//注意index
if(word1.charAt(i-1) == word2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1];
}
else{
dp[i][j] = Math.min(Math.min(dp[i][j-1],dp[i-1][j]),dp[i-1][j-1])+1;
}
}
}
return dp[n1][n2];
}
}
Last updated