Count Different Palindromic Subsequences

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

A subsequence of a string S is obtained by deleting 0 or more characters from S.

A sequence is palindromic if it is equal to the sequence reversed.

Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.

Example 1:

Input: 
S = 'bccb'
Output: 6
Explanation: 
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.

Example 2:

Input: 
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation: 
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.

Note:

The length of S will be in the range [1, 1000].

Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.

很有难度的一道题,

时间和空间复杂度 o(n^2)

class Solution {
   

    public int countPalindromicSubsequences(String S) {
       int n = S.length();
        
        int[][] dp = new int[n][n];
        int M = 1000000007;
        //长读为1的字符串 是一个回文
        for(int i = 0; i < n; i++){
            dp[i][i] = 1;
        }
        
        for(int len = 1; len < n;len++){
            for(int i = 0 ; i < n - len; i++){
                int j = i + len;
                
                if(S.charAt(j) == S.charAt(i)){
                    int left = i + 1;
                    int right = j -1;
                    
                    //从s[i] 的下一个,到s[j]的前一个开始找,遇到和s[i]相同的,就停止,停止时,如果left 小于right,说明遇到了和s[i]一样的字符,
                    //如果left 大于 right,说明没有遇到相同的字符,while循环是根据left 《= right 终止的,如果left == right,说明只有一个和s[i]相同的字符
                    while(left<= right && S.charAt(left) != S.charAt(j)) left++;
                    while(left<= right && S.charAt(right) != S.charAt(j)) right--;
                    
                    //中间没有和收尾相同的字符
                    if(left > right){
                        dp[i][j] = dp[i+1][j-1]*2 + 2;
                    }
                    else if(left == right){
                        dp[i][j] = dp[i+1][j-1]*2 + 1;
                    }
                    else{
                        
                        //重复计算的个数,就是两个重复相同字符之间所有字符的回文个数
                        dp[i][j] = dp[i+1][j-1]*2 - dp[left+1][right-1];
                    }
                }else{
                    dp[i][j] = dp[i][j-1] + dp[i+1][j] - dp[i+1][j-1];
                }
                //or
                dp[i][j] = (dp[i][j] + M)%M
                dp[i][j] = (dp[i][j] < 0)? dp[i][j] + M : dp[i][j] % M;
            }
        }
        
        return dp[0][n-1];
    }

    
       
}

Last updated