CS
Algorithm
Algorithm
  • lintcode
  • EPI
    • String
      • Base Convert
  • Graph
    • Inorder Successor in BST
    • Balanced Binary Tree
    • All Paths From Source to Target
  • LinkedIn
    • House robber II
    • Single Number
    • Flatten Binary Tree to Linked List
    • Smallest Difference pair of values between two unsorted Arrays
    • Word Search II
    • Implement Trie (Prefix Tree)
    • K Closest Points
    • implement BST
    • HashMap
    • Implement strStr()
    • Min Stack
    • Meeting Rooms
    • Shortest Completing Word
    • Longest Palindromic Substring
    • Longest Palindromic Subsequence
    • Count Different Palindromic Subsequences
    • Palindromic Substrings
    • Sparse Matrix Multiplication
    • Insert Delete GetRandom O(1) - Duplicates allowed
    • Bulb Switcher
    • Verify Preorder Sequence in Binary Search Tree
    • Untitled
    • Find the Celebrity
    • Coin Change
    • Partition Equal Subset Sum
    • Permutation Sequence
    • Next Permutation
    • Kth Smallest Element in a BST
    • Word Search
    • Word Break
    • Shuffle an Array
    • Add Two Numbers
    • Longest Substring Without Repeating Characters
    • Longest Increasing Subsequence
    • 3Sum Smaller
    • LFU Cache
    • Copy List with Random Pointer
    • Linked List Cycle
    • Merge Sorted Array
    • Two Sum II - Input array is sorted
    • Search Insert Position
    • Find First and Last Position of Element in Sorted Array
    • Combination Sum
    • Path Sum
    • Roman to Integer
    • Valid Parentheses
    • Product of Array Except Self
    • Permutations
    • 3Sum
    • Reverse Integer
    • Longest Common Subsequence and substring
    • Implement Stack using Queues
    • Sort Characters By Frequency
    • Delete Node in a BST
    • Invert Binary Tree
    • Serialize and Deserialize BST
    • Reverse String
    • Binary Tree Zigzag Level Order Traversal
    • Friend Circles
    • Letter Combinations of a Phone Number
    • Fizz Buzz
    • Encode and Decode TinyURL
    • Binary Tree Right Side View
    • Shortest Word Distance III
    • Binary Search Tree Iterator
    • Kth Largest Element in an Array
    • Clone Graph
    • Lowest Common Ancestor III
    • Lowest Common Ancestor II
    • Reverse Words in a String
    • Path Sum
    • Find K Pairs with Smallest Sums
    • Validate Binary Search Tree
    • All O`one Data Structure
    • Top K Frequent Elements
    • Integer to Roman
    • Shortest Word Distance III
    • Edit Distance
    • Profitable Schemes
    • Minimum Window Substring
    • LRU Cache
    • Text Justification
    • Integer to English Words
    • Partition to K Equal Sum Subsets
    • Graph Valid Tree
    • Exclusive Time of Functions
    • Repeated DNA Sequences
    • Valid Number
    • Insert Delete GetRandom O(1)
    • Same Tree
    • Friends Within Three Jumps
    • Isomorphic Strings
    • Sum of Square Numbers
    • Valid Perfect Square
    • Evaluate Reverse Polish Notation
    • House Robber
    • Palindromic Substrings
    • Find Largest Value in Each Tree Row
    • Can Place Flowers
    • Insert Interval
    • Maximum Depth of Binary Tree
    • Two Sum
    • Paint House II
    • Max Points on a Line
    • Word Ladder II
    • Word Ladder
    • Validate IP Address
    • Maximum Product Subarray
    • Factor Combinations
    • Flatten Nested List Iterator
    • Max Stack
    • Number of Connected Components in an Undirected Graph
    • Combination Sum II
    • Permutations II
    • Permutations
    • Climbing Stairs
    • Paint House
    • Closest Binary Search Tree Value
    • Closest Binary Search Tree Value II
    • Rotate String
    • Max Area of Island
    • Maximum Subarray
    • Serialize and Deserialize Binary Tree
    • Second Minimum Node In a Binary Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Symmetric Tree
    • Binary Tree Upside Down
    • Maximum Depth of Binary Tree
    • Find Leaves of Binary Tree
    • Number of Islands
    • Nested List Weight Sum II
    • Nested List Weight Sum
    • Merge Intervals
    • Valid Triangle Number
    • Find K Closest Elements
    • Find Smallest Letter Greater Than Target
    • Pow(x,n)
    • Search in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Sqrt(x)
    • Intersection of Two Linked Lists
    • Binary Tree Level Order Traversal
    • Shortest Word Distance
    • Two Sum III - Data structure design
    • Shortest Word Distance II
  • Binary Search
    • Find K Closest Elements
    • Find Min In Rotated Sorted Array
    • Find Peak Element
    • First Bad Version
    • First Position Of Target
    • Guess Num Higer Or Lower
    • Last Position Of Target
    • Longest Increasing Subsequence
    • Russian Doll Envelopes
    • Search In Big Sorted Array
    • Search Insert Position
    • Single Number IV
    • pow(x,n)
    • sqrt
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search for a Range
    • Intersection of Two Arrays
    • Count of Smaller Numbers After Self
  • Binary Tree
    • 107. Binary Tree Level Order Traversal II
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Tree II
    • Lowest Common Ancestor III
    • preorder Traversal
    • Inorder traversal
    • Binary Tree Path
    • post Order traversal
    • Level Traversal
    • Serialize and Deserialize Binary Tree 07/25
    • Find Leaves of Binary Tree 07/25
    • Sum of Left Leaves 07/25
    • Recover Binary Search Tree 07/26
    • Check Full Binary Tree 07/26
    • Binary Tree Longest Consecutive Sequence07/26
    • Equal Tree Partition 07/27
    • Same Tree 07/27
    • Sum Root to Leaf Numbers 07/26
    • Binary Search Tree Iterator 07/28
    • Preorder morris traversal 07/29
    • inorder traversal morris 07/29
  • BFS
    • Search Graph Nodes 07/30
    • Is Graph Bipartite? 07/30
    • Walls and Gates 07/30
    • Clone Graph 07/30
    • Word Ladder 07/30
    • Topological Sorting 08/01
    • Course Schedule 08/03
    • Course Schedule II 08/04
  • DFS
    • Target Sum 08/06
    • Minimum Subtree 08/07
    • Word Search 08/07
    • Pacific Atlantic Water Flow 08/08
    • Matrix Water Injection 08/10
    • Maximum Subtree 08/10
  • Dynamic Programming
    • 931. Minimum Falling Path Sum
    • Unique Binary Search Trees
  • Linked List
    • Reverse Linked List
    • Linked List Cycle
    • Swap Nodes in Pairs
    • Odd Even Linked List
    • Merge k Sorted Lists
    • Partition List
    • Palindrome Linked List
    • Reorder List
    • Linked List Cycle II
    • Delete Node in a Linked List
    • Reverse Nodes in k-Group
    • Rotate List
    • Reverse Linked List II
  • Arrays
    • 189. Rotate Array
    • 80. Remove Duplicates from Sorted Array II
    • 26. Remove Duplicates from Sorted Array
    • 628. Maximum Product of Three Numbers
    • 48. Rotate Image
    • 289. Game of Life
    • 334. Increasing Triplet Subsequence
    • 11. Container With Most Water
    • 122.Best Time to Buy and Sell Stock II
    • 274. H-Index
    • 134. Gas Station
    • 118. Pascal's Triangle
    • Sort Colors
    • Remove Element
    • Merge sorted array
    • First Missing Positive
  • Strings
    • 93. Restore IP Addresses
    • 71. Simplify Path
    • 43. Multiply Strings
    • 606. Construct String from Binary Tree
    • 917. Reverse Only Letters
    • 929.Unique Email Addresses
    • Valid Anagram
    • Compare Strings
    • Anagrams
    • Longest Common Prefix
    • Implement strStr()
    • String to Integer (atoi)
Powered by GitBook
On this page
  1. LinkedIn

Exclusive Time of Functions

PreviousGraph Valid TreeNextRepeated DNA Sequences

Last updated 6 years ago

follow up: also calculate inclusive time

Given the running logs of n functions that are executed in a nonpreemptive single threaded CPU, find the exclusive time of these functions.

Each function has a unique id, start from 0 to n-1. A function may be called recursively or by another function.

A log is a string has this format : function_id:start_or_end:timestamp. For example, "0:start:0" means function 0 starts from the very beginning of time 0. "0:end:0" means function 0 ends to the very end of time 0.

Exclusive time of a function is defined as the time spent within this function, the time spent by calling other functions should not be considered as this function's exclusive time. You should return the exclusive time of each function sorted by their function id.

Example 1:

Input:
n = 2
logs = 
["0:start:0",
 "1:start:2",
 "1:end:5",
 "0:end:6"]
Output:[3, 4]
Explanation:
Function 0 starts at time 0, then it executes 2 units of time and reaches the end of time 1. 
Now function 0 calls function 1, function 1 starts at time 2, executes 4 units of time and end at time 5.
Function 0 is running again at time 6, and also end at the time 6, thus executes 1 unit of time. 
So function 0 totally execute 2 + 1 = 3 units of time, and function 1 totally execute 4 units of time.

Note:

  1. Input logs will be sorted by timestamp, NOT log id.

  2. Your output should be sorted by function id, which means the 0th element of your output corresponds to the exclusive time of function 0.

  3. Two functions won't start or end at the same time.

  4. Functions could be called recursively, and will always end.

  5. 1 <= n <= 100

利用stack,因为可以递归调用函数,所以一个函数可能会被调用多次,所以stack比较合适

在有新的start开始时,之前一个函数的用时就是start的时间,减去前一个的时间,因为是从0开始,所以不用加1,比如 0 start at 0, 然后1 start at 2, 所以0 -> 1运行的时间是2-0 = 2, 这里用prev来记录前一个的时间。 如果遇到end的时候,比如1start at 2, end at4,那么他的运行时间就是 4-2+1 = 3, 因为是2,3,4, prev这个时候不能设为4了,因为4是属于已经pop出去的那个函数的,下个函数是从4+1开始,所以prev要在之前函数end的时间的基础上加上1

时间复杂度 o(N) N 是log的size

.空间复杂度, The stack can grow up to a depth of at most n/2. Here, n refers to the number of elements in the given logs list.

class Solution {
    public int[] exclusiveTime(int n, List<String> logs) {
        Stack<Integer> stack = new Stack<>();
        
        String[] s = logs.get(0).split(":");
        
        stack.push(Integer.parseInt(s[0]));
        
        int prev = Integer.parseInt(s[2]);
        int i = 1;
        
        int[] res = new int[n];
        while(i < logs.size()){
            s = logs.get(i).split(":");
            
            if(s[1].equals("start")){
                if(!stack.isEmpty()){
                    res[stack.peek()] += Integer.parseInt(s[2] )- prev;
                }
                
                stack.push(Integer.parseInt(s[0]));
                prev = Integer.parseInt(s[2] );
            }else{
                res[stack.peek()] += Integer.parseInt(s[2] )- prev + 1;
                stack.pop();
                prev = Integer.parseInt(s[2] ) + 1;
            }
            i++;
        }
        
        return res;
    }
}

犯错,while循环条件里不用check stack是不是空,在调用peek的时候check就好

What are Exclusive and Inclusive?!MicrosoftLearn
Logo