Partition to K Equal Sum Subsets
Given an array of integers nums
and a positive integer k
, find whether it's possible to divide this array into k
non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Note:
1 <= k <= len(nums) <= 16
.
0 < nums[i] < 10000
.
看code吧,不是很会写,时间复杂度这个题所有解法都是指数型的 很高
class Solution {
private int subSum;
private int k;
private boolean[] used;
private int[] nums;
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum = 0;
for(int i = 0; i < nums.length; i++){
sum += nums[i];
}
if(sum % k != 0)
return false;
this.subSum = sum / k;
this.k = k;
this.used = new boolean[nums.length];
this.nums = nums;
int index = 0;
return dfs(0,0, 0);
}
public boolean dfs(int index, int sum,int matched){
if(subSum == sum){
return matched + 1 == k || dfs(0,0,matched+1);
}
else if(sum > subSum){
return false;
}
else {
if(index == nums.length){
return false;
}
boolean flag = false;
if(!used[index]){
used[index] = true;
flag = dfs(index+1,sum+nums[index],matched);
used[index] = false;
}
return flag || dfs(index+1, sum, matched);
}
}
}
时间复杂度:O(k ^ N),其中N时nums的长度,k是子集数。如果采用了优化方案a,则复杂度至少降到O(k ^ (N - k) * k!),因为一开始会跳过很多和为0的子集,至少前k个元素的搜索次数不超过O(k!)。
空间复杂度:O(N), 用于函数调用栈。
class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum = 0;
for(int x : nums){
sum += x;
}
if(sum % k != 0){
return false;
}
int subSum = sum / k;
Arrays.sort(nums);
int beginIndex = nums.length-1;
if(nums[beginIndex] > subSum){
return false;
}
while(beginIndex >= 0&& nums[beginIndex] == subSum){
beginIndex--;
k--;
}
return partition(new int[k], nums,beginIndex, subSum);
}
public boolean partition(int[] subsets, int[] nums, int index, int target){
if(index < 0){
return true;
}
int selected = nums[index];
for(int i = 0; i < subsets.length;i++){
if(subsets[i] + selected <= target){
subsets[i] += selected;
if(partition(subsets,nums,index - 1, target)){
return true;
}
subsets[i] -= selected;
}
}
return false;
}
}
Last updated