Sparse Matrix Multiplication
Given two sparse matrices A and B, return the result of AB.
You may assume that A's column number is equal to B's row number.
Example:
Input:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
Output:
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
先记录下 B中不为0的坐标
time o(n^3), space o(n*m)
假设矩阵A,B均为 n x n 的矩阵, 矩阵A的稀疏系数为a,矩阵B的稀疏系数为b, a,b∈[0, 1],矩阵越稀疏,系数越小。
Time O(n^2 * (1 + a * b * n)) = O(n^2 + a * b * n^3) Space O(b * n^2)
class Solution {
public int[][] multiply(int[][] A, int[][] B) {
//
int n = A.length;
int m = B[0].length;
int t = A[0].length ;// equals to B.length
int[][] C = new int[n][m];
List<List<Integer>> record = new ArrayList<>(); //record index in B which is not zero
for(int i = 0; i < t ; i++){
record.add(new ArrayList<>());
for(int j = 0; j < m; j++){
record.get(i).add(j);
}
}
for(int i = 0; i < n; i++){
for(int k = 0; k < t; k++){
if(A[i][k] == 0)
continue;
for(int j : record.get(k)){
C[i][j] += A[i][k]*B[k][j];
}
}
}
return C;
}
}
Last updated