CS
Algorithm
Algorithm
  • lintcode
  • EPI
    • String
      • Base Convert
  • Graph
    • Inorder Successor in BST
    • Balanced Binary Tree
    • All Paths From Source to Target
  • LinkedIn
    • House robber II
    • Single Number
    • Flatten Binary Tree to Linked List
    • Smallest Difference pair of values between two unsorted Arrays
    • Word Search II
    • Implement Trie (Prefix Tree)
    • K Closest Points
    • implement BST
    • HashMap
    • Implement strStr()
    • Min Stack
    • Meeting Rooms
    • Shortest Completing Word
    • Longest Palindromic Substring
    • Longest Palindromic Subsequence
    • Count Different Palindromic Subsequences
    • Palindromic Substrings
    • Sparse Matrix Multiplication
    • Insert Delete GetRandom O(1) - Duplicates allowed
    • Bulb Switcher
    • Verify Preorder Sequence in Binary Search Tree
    • Untitled
    • Find the Celebrity
    • Coin Change
    • Partition Equal Subset Sum
    • Permutation Sequence
    • Next Permutation
    • Kth Smallest Element in a BST
    • Word Search
    • Word Break
    • Shuffle an Array
    • Add Two Numbers
    • Longest Substring Without Repeating Characters
    • Longest Increasing Subsequence
    • 3Sum Smaller
    • LFU Cache
    • Copy List with Random Pointer
    • Linked List Cycle
    • Merge Sorted Array
    • Two Sum II - Input array is sorted
    • Search Insert Position
    • Find First and Last Position of Element in Sorted Array
    • Combination Sum
    • Path Sum
    • Roman to Integer
    • Valid Parentheses
    • Product of Array Except Self
    • Permutations
    • 3Sum
    • Reverse Integer
    • Longest Common Subsequence and substring
    • Implement Stack using Queues
    • Sort Characters By Frequency
    • Delete Node in a BST
    • Invert Binary Tree
    • Serialize and Deserialize BST
    • Reverse String
    • Binary Tree Zigzag Level Order Traversal
    • Friend Circles
    • Letter Combinations of a Phone Number
    • Fizz Buzz
    • Encode and Decode TinyURL
    • Binary Tree Right Side View
    • Shortest Word Distance III
    • Binary Search Tree Iterator
    • Kth Largest Element in an Array
    • Clone Graph
    • Lowest Common Ancestor III
    • Lowest Common Ancestor II
    • Reverse Words in a String
    • Path Sum
    • Find K Pairs with Smallest Sums
    • Validate Binary Search Tree
    • All O`one Data Structure
    • Top K Frequent Elements
    • Integer to Roman
    • Shortest Word Distance III
    • Edit Distance
    • Profitable Schemes
    • Minimum Window Substring
    • LRU Cache
    • Text Justification
    • Integer to English Words
    • Partition to K Equal Sum Subsets
    • Graph Valid Tree
    • Exclusive Time of Functions
    • Repeated DNA Sequences
    • Valid Number
    • Insert Delete GetRandom O(1)
    • Same Tree
    • Friends Within Three Jumps
    • Isomorphic Strings
    • Sum of Square Numbers
    • Valid Perfect Square
    • Evaluate Reverse Polish Notation
    • House Robber
    • Palindromic Substrings
    • Find Largest Value in Each Tree Row
    • Can Place Flowers
    • Insert Interval
    • Maximum Depth of Binary Tree
    • Two Sum
    • Paint House II
    • Max Points on a Line
    • Word Ladder II
    • Word Ladder
    • Validate IP Address
    • Maximum Product Subarray
    • Factor Combinations
    • Flatten Nested List Iterator
    • Max Stack
    • Number of Connected Components in an Undirected Graph
    • Combination Sum II
    • Permutations II
    • Permutations
    • Climbing Stairs
    • Paint House
    • Closest Binary Search Tree Value
    • Closest Binary Search Tree Value II
    • Rotate String
    • Max Area of Island
    • Maximum Subarray
    • Serialize and Deserialize Binary Tree
    • Second Minimum Node In a Binary Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Symmetric Tree
    • Binary Tree Upside Down
    • Maximum Depth of Binary Tree
    • Find Leaves of Binary Tree
    • Number of Islands
    • Nested List Weight Sum II
    • Nested List Weight Sum
    • Merge Intervals
    • Valid Triangle Number
    • Find K Closest Elements
    • Find Smallest Letter Greater Than Target
    • Pow(x,n)
    • Search in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Sqrt(x)
    • Intersection of Two Linked Lists
    • Binary Tree Level Order Traversal
    • Shortest Word Distance
    • Two Sum III - Data structure design
    • Shortest Word Distance II
  • Binary Search
    • Find K Closest Elements
    • Find Min In Rotated Sorted Array
    • Find Peak Element
    • First Bad Version
    • First Position Of Target
    • Guess Num Higer Or Lower
    • Last Position Of Target
    • Longest Increasing Subsequence
    • Russian Doll Envelopes
    • Search In Big Sorted Array
    • Search Insert Position
    • Single Number IV
    • pow(x,n)
    • sqrt
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search for a Range
    • Intersection of Two Arrays
    • Count of Smaller Numbers After Self
  • Binary Tree
    • 107. Binary Tree Level Order Traversal II
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Tree II
    • Lowest Common Ancestor III
    • preorder Traversal
    • Inorder traversal
    • Binary Tree Path
    • post Order traversal
    • Level Traversal
    • Serialize and Deserialize Binary Tree 07/25
    • Find Leaves of Binary Tree 07/25
    • Sum of Left Leaves 07/25
    • Recover Binary Search Tree 07/26
    • Check Full Binary Tree 07/26
    • Binary Tree Longest Consecutive Sequence07/26
    • Equal Tree Partition 07/27
    • Same Tree 07/27
    • Sum Root to Leaf Numbers 07/26
    • Binary Search Tree Iterator 07/28
    • Preorder morris traversal 07/29
    • inorder traversal morris 07/29
  • BFS
    • Search Graph Nodes 07/30
    • Is Graph Bipartite? 07/30
    • Walls and Gates 07/30
    • Clone Graph 07/30
    • Word Ladder 07/30
    • Topological Sorting 08/01
    • Course Schedule 08/03
    • Course Schedule II 08/04
  • DFS
    • Target Sum 08/06
    • Minimum Subtree 08/07
    • Word Search 08/07
    • Pacific Atlantic Water Flow 08/08
    • Matrix Water Injection 08/10
    • Maximum Subtree 08/10
  • Dynamic Programming
    • 931. Minimum Falling Path Sum
    • Unique Binary Search Trees
  • Linked List
    • Reverse Linked List
    • Linked List Cycle
    • Swap Nodes in Pairs
    • Odd Even Linked List
    • Merge k Sorted Lists
    • Partition List
    • Palindrome Linked List
    • Reorder List
    • Linked List Cycle II
    • Delete Node in a Linked List
    • Reverse Nodes in k-Group
    • Rotate List
    • Reverse Linked List II
  • Arrays
    • 189. Rotate Array
    • 80. Remove Duplicates from Sorted Array II
    • 26. Remove Duplicates from Sorted Array
    • 628. Maximum Product of Three Numbers
    • 48. Rotate Image
    • 289. Game of Life
    • 334. Increasing Triplet Subsequence
    • 11. Container With Most Water
    • 122.Best Time to Buy and Sell Stock II
    • 274. H-Index
    • 134. Gas Station
    • 118. Pascal's Triangle
    • Sort Colors
    • Remove Element
    • Merge sorted array
    • First Missing Positive
  • Strings
    • 93. Restore IP Addresses
    • 71. Simplify Path
    • 43. Multiply Strings
    • 606. Construct String from Binary Tree
    • 917. Reverse Only Letters
    • 929.Unique Email Addresses
    • Valid Anagram
    • Compare Strings
    • Anagrams
    • Longest Common Prefix
    • Implement strStr()
    • String to Integer (atoi)
Powered by GitBook
On this page
  1. LinkedIn

Profitable Schemes

There are G people in a gang, and a list of various crimes they could commit.

The i-th crime generates a profit[i]and requires group[i] gang members to participate.

If a gang member participates in one crime, that member can't participate in another crime.

Let's call a profitable scheme any subset of these crimes that generates at least Pprofit, and the total number of gang members participating in that subset of crimes is at most G.

How many schemes can be chosen? Since the answer may be very large, return it modulo 10^9 + 7.

Example 1:

Input: G = 5, P = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation: 
To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.

Example 2:

Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation: 
To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

Note:

  1. 1 <= G <= 100

  2. 0 <= P <= 100

  3. 1 <= group[i] <= 100

  4. 0 <= profit[i] <= 100

  5. 1 <= group.length = profit.length <= 100

0-1背包问题

时间和复杂度O(N*P*G)

状态转移方程:当前任务 dp[i][j][k], 完成第i个任务,收入是j,需要的人数是k,可以选择不做这次任务,那么他至少和第i-1个任务,收入i,需要k个人的个数是一样的,如果选择做这次任务,那么他就是加上在上次任务(i-1)的收入是j-p,需要的人数是k-g,这样加上这次需要的人数是g,收入是p,刚好就是所需要的j和k,这里要注意j 和p,k和g的大小,

class Solution {
    public int profitableSchemes(int G, int P, int[] group, int[] profit) {
        int taskNum = profit.length;
        
        int[][][] dp = new int[taskNum+1][P+1][G+1];
        
        dp[0][0][0] = 1;
        int m = 1000000007;
        for(int i = 1; i <=taskNum;i++){
            int p = profit[i-1];
            int g = group[i-1];
            
            for(int j = 0; j <= P; j++){
                for(int k = 0; k <= G; k++){
                // k < g  人手不够,j < p,获利不够
                //如果选择做这次任务,那么就是找上一次任务里,收益是j-p,需要的人数是k-g的,为这次
                //预留
                    dp[i][j][k] = (dp[i-1][j][k] + (k < g ? 0 : dp[i-1][Math.max(0,j - p)][k-g]) ) % m;
                }
            }
        }
        
        int res = 0;
        
        for(int i =0; i < G+1;i++){
            res += dp[taskNum][P][i];
            res  =res % m;
        }
        
        return res ;
    }
    
    
}

降维优化

使用临时数组,时间复杂度 不变 空间复杂度 降了一维o(pg)

class Solution {
public:
  int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {    
    const int kMod = 1000000007;
    const int K = group.size();
    // dp[i][j]:= # of schemes of making profit i with j people.
    vector<vector<int>> dp(P + 1, vector<int>(G + 1, 0));
    dp[0][0] = 1;
    
    for (int k = 1; k <= K; ++k) {
      auto tmp = dp;
      const int p = profit[k - 1];
      const int g = group[k - 1];
      for (int i = 0; i <= P; ++i)    
        for (int j = 0; j <= G; ++j)
          tmp[i][j] = (tmp[i][j] + (j < g ? 0 : dp[max(0, i - p)][j - g])) % kMod;
      dp.swap(tmp);
    }
    return accumulate(begin(dp[P]), end(dp[P]), 0LL) % kMod;
  }
};
PreviousEdit DistanceNextMinimum Window Substring

Last updated 6 years ago