Valid Triangle Number

Given an array consists of non-negative integers, your task is to count the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.

Example 1:

Input: [2,2,3,4]
Output: 3
Explanation:
Valid combinations are: 
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3

Note:

  1. The length of the given array won't exceed 1000.

  2. The integers in the given array are in the range of [0, 1000].

这种方法能将时间复杂度优化到O(n2), 感觉很叼了。思路是排序之后,从数字末尾开始往前遍历,将left指向首数字,将right之前遍历到的数字的前面一个数字,然后如果left小于right就进行循环,循环里面判断如果left指向的数加上right指向的数大于当前的数字的话,那么right到left之间的数字都可以组成三角形,这是为啥呢,相当于此时确定了i和right的位置,可以将left向右移到right的位置,中间经过的数都大于left指向的数,所以都能组成三角形,就说这思路叼不叼!加完之后,right自减一,即向左移动一位。如果left和right指向的数字之和不大于nums[i],那么left自增1,即向右移动一位,参见代码如下:

要注意判断数字是否为0,另外也要提前排序数组

class Solution {
    public int triangleNumber(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        int res = 0;
        
        Arrays.sort(nums);
        for(int i = nums.length - 1; i >= 2; i--){
            int left = 0, right = i - 1;
            
            while(left < right){
                if(nums[left] + nums[right] > nums[i] && nums[left] != 0 && nums[right] != 0 && nums[i] != 0){
                    res += right - left;
                    right--;
                }
                
                else{
                    left++;
                }
            }
        }
        
        
        return res;
    }
    
    
   
}

Last updated