Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
DP time o(n),space o(n)
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int res = nums[0];
for(int i =1; i < nums.length; i++){
dp[i] = nums[i] + (dp[i-1] > 0 ? dp[i-1] : 0);
res = Math.max(res,dp[i]);
}
return res;
}
}
time o(n), space o(1)
class Solution {
public int maxSubArray(int[] nums) {
int res = nums[0];
int sum = nums[0];
for(int i = 1; i < nums.length;i++){
sum = Math.max(sum+nums[i],nums[i]);
res = Math.max(res,sum);
}
return res;
}
}
divide and conquer time o(nlogn)
class Solution {
public int maxSubArray(int[] nums) {
return divid(nums,0,nums.length - 1);
}
public int divid(int[] nums, int start, int end){
if(start == end)
return nums[start];
if(start + 1 == end){
return Math.max(nums[start] + nums[end], Math.max(nums[start],nums[end]));
}
int mid = (start+end)/2;
int lmax = divid(nums,start,mid-1);
int rmax = divid(nums,mid+1,end);
int mmax = nums[mid];
int tmp = nums[mid];
for(int i = mid -1 ; i >= start;i--){
tmp += nums[i];
if(tmp > mmax)
mmax = tmp;
}
tmp = mmax;
for(int i = mid + 1; i <= end;i++){
tmp += nums[i];
if(tmp > mmax)
mmax = tmp;
}
return Math.max(mmax,Math.max(lmax,rmax));
}
}
既能输出最大和,又能输出最大位置的算法
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0)
return 0;
int curMax = nums[0];
int start = 0,end = 0;
int[] res = new int[2];
int max = nums[0];
for(int i = 1; i < nums.length; i++){
int v = nums[i];
if(curMax + v > v){
curMax+= v;
end++;
}else{
curMax = v;
start = i;
end = i;
}
if(curMax > max){
max = curMax;
res[0] = start;
res[1] = end;
}
}
System.out.println(res[0] + " "+ res[1]);
return max;
}
}