Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
Example:
Input: nums = [-2,0,1,3], and target = 2
Output: 2
Explanation: Because there are two triplets which sums are less than 2:
[-2,0,1]
[-2,0,3]
Follow up: Could you solve it in O(n2) runtime?
class Solution {
public int threeSumSmaller(int[] nums, int target) {
if(nums == null || nums.length == 0)
return 0;
Arrays.sort(nums);
int res = 0;
for(int i = 0; i < nums.length - 2; i++ ){
int m = i+1, n = nums.length-1;
while(m < n){
int sum = nums[i]+nums[m]+nums[n];
if(sum >= target){
n--;
}
else{
res += n - m;
m++;
}
}
}
return res;
}
}