CS
Algorithm
Algorithm
  • lintcode
  • EPI
    • String
      • Base Convert
  • Graph
    • Inorder Successor in BST
    • Balanced Binary Tree
    • All Paths From Source to Target
  • LinkedIn
    • House robber II
    • Single Number
    • Flatten Binary Tree to Linked List
    • Smallest Difference pair of values between two unsorted Arrays
    • Word Search II
    • Implement Trie (Prefix Tree)
    • K Closest Points
    • implement BST
    • HashMap
    • Implement strStr()
    • Min Stack
    • Meeting Rooms
    • Shortest Completing Word
    • Longest Palindromic Substring
    • Longest Palindromic Subsequence
    • Count Different Palindromic Subsequences
    • Palindromic Substrings
    • Sparse Matrix Multiplication
    • Insert Delete GetRandom O(1) - Duplicates allowed
    • Bulb Switcher
    • Verify Preorder Sequence in Binary Search Tree
    • Untitled
    • Find the Celebrity
    • Coin Change
    • Partition Equal Subset Sum
    • Permutation Sequence
    • Next Permutation
    • Kth Smallest Element in a BST
    • Word Search
    • Word Break
    • Shuffle an Array
    • Add Two Numbers
    • Longest Substring Without Repeating Characters
    • Longest Increasing Subsequence
    • 3Sum Smaller
    • LFU Cache
    • Copy List with Random Pointer
    • Linked List Cycle
    • Merge Sorted Array
    • Two Sum II - Input array is sorted
    • Search Insert Position
    • Find First and Last Position of Element in Sorted Array
    • Combination Sum
    • Path Sum
    • Roman to Integer
    • Valid Parentheses
    • Product of Array Except Self
    • Permutations
    • 3Sum
    • Reverse Integer
    • Longest Common Subsequence and substring
    • Implement Stack using Queues
    • Sort Characters By Frequency
    • Delete Node in a BST
    • Invert Binary Tree
    • Serialize and Deserialize BST
    • Reverse String
    • Binary Tree Zigzag Level Order Traversal
    • Friend Circles
    • Letter Combinations of a Phone Number
    • Fizz Buzz
    • Encode and Decode TinyURL
    • Binary Tree Right Side View
    • Shortest Word Distance III
    • Binary Search Tree Iterator
    • Kth Largest Element in an Array
    • Clone Graph
    • Lowest Common Ancestor III
    • Lowest Common Ancestor II
    • Reverse Words in a String
    • Path Sum
    • Find K Pairs with Smallest Sums
    • Validate Binary Search Tree
    • All O`one Data Structure
    • Top K Frequent Elements
    • Integer to Roman
    • Shortest Word Distance III
    • Edit Distance
    • Profitable Schemes
    • Minimum Window Substring
    • LRU Cache
    • Text Justification
    • Integer to English Words
    • Partition to K Equal Sum Subsets
    • Graph Valid Tree
    • Exclusive Time of Functions
    • Repeated DNA Sequences
    • Valid Number
    • Insert Delete GetRandom O(1)
    • Same Tree
    • Friends Within Three Jumps
    • Isomorphic Strings
    • Sum of Square Numbers
    • Valid Perfect Square
    • Evaluate Reverse Polish Notation
    • House Robber
    • Palindromic Substrings
    • Find Largest Value in Each Tree Row
    • Can Place Flowers
    • Insert Interval
    • Maximum Depth of Binary Tree
    • Two Sum
    • Paint House II
    • Max Points on a Line
    • Word Ladder II
    • Word Ladder
    • Validate IP Address
    • Maximum Product Subarray
    • Factor Combinations
    • Flatten Nested List Iterator
    • Max Stack
    • Number of Connected Components in an Undirected Graph
    • Combination Sum II
    • Permutations II
    • Permutations
    • Climbing Stairs
    • Paint House
    • Closest Binary Search Tree Value
    • Closest Binary Search Tree Value II
    • Rotate String
    • Max Area of Island
    • Maximum Subarray
    • Serialize and Deserialize Binary Tree
    • Second Minimum Node In a Binary Tree
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Search Tree
    • Symmetric Tree
    • Binary Tree Upside Down
    • Maximum Depth of Binary Tree
    • Find Leaves of Binary Tree
    • Number of Islands
    • Nested List Weight Sum II
    • Nested List Weight Sum
    • Merge Intervals
    • Valid Triangle Number
    • Find K Closest Elements
    • Find Smallest Letter Greater Than Target
    • Pow(x,n)
    • Search in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Sqrt(x)
    • Intersection of Two Linked Lists
    • Binary Tree Level Order Traversal
    • Shortest Word Distance
    • Two Sum III - Data structure design
    • Shortest Word Distance II
  • Binary Search
    • Find K Closest Elements
    • Find Min In Rotated Sorted Array
    • Find Peak Element
    • First Bad Version
    • First Position Of Target
    • Guess Num Higer Or Lower
    • Last Position Of Target
    • Longest Increasing Subsequence
    • Russian Doll Envelopes
    • Search In Big Sorted Array
    • Search Insert Position
    • Single Number IV
    • pow(x,n)
    • sqrt
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search for a Range
    • Intersection of Two Arrays
    • Count of Smaller Numbers After Self
  • Binary Tree
    • 107. Binary Tree Level Order Traversal II
    • Lowest Common Ancestor of a Binary Tree
    • Lowest Common Ancestor of a Binary Tree II
    • Lowest Common Ancestor III
    • preorder Traversal
    • Inorder traversal
    • Binary Tree Path
    • post Order traversal
    • Level Traversal
    • Serialize and Deserialize Binary Tree 07/25
    • Find Leaves of Binary Tree 07/25
    • Sum of Left Leaves 07/25
    • Recover Binary Search Tree 07/26
    • Check Full Binary Tree 07/26
    • Binary Tree Longest Consecutive Sequence07/26
    • Equal Tree Partition 07/27
    • Same Tree 07/27
    • Sum Root to Leaf Numbers 07/26
    • Binary Search Tree Iterator 07/28
    • Preorder morris traversal 07/29
    • inorder traversal morris 07/29
  • BFS
    • Search Graph Nodes 07/30
    • Is Graph Bipartite? 07/30
    • Walls and Gates 07/30
    • Clone Graph 07/30
    • Word Ladder 07/30
    • Topological Sorting 08/01
    • Course Schedule 08/03
    • Course Schedule II 08/04
  • DFS
    • Target Sum 08/06
    • Minimum Subtree 08/07
    • Word Search 08/07
    • Pacific Atlantic Water Flow 08/08
    • Matrix Water Injection 08/10
    • Maximum Subtree 08/10
  • Dynamic Programming
    • 931. Minimum Falling Path Sum
    • Unique Binary Search Trees
  • Linked List
    • Reverse Linked List
    • Linked List Cycle
    • Swap Nodes in Pairs
    • Odd Even Linked List
    • Merge k Sorted Lists
    • Partition List
    • Palindrome Linked List
    • Reorder List
    • Linked List Cycle II
    • Delete Node in a Linked List
    • Reverse Nodes in k-Group
    • Rotate List
    • Reverse Linked List II
  • Arrays
    • 189. Rotate Array
    • 80. Remove Duplicates from Sorted Array II
    • 26. Remove Duplicates from Sorted Array
    • 628. Maximum Product of Three Numbers
    • 48. Rotate Image
    • 289. Game of Life
    • 334. Increasing Triplet Subsequence
    • 11. Container With Most Water
    • 122.Best Time to Buy and Sell Stock II
    • 274. H-Index
    • 134. Gas Station
    • 118. Pascal's Triangle
    • Sort Colors
    • Remove Element
    • Merge sorted array
    • First Missing Positive
  • Strings
    • 93. Restore IP Addresses
    • 71. Simplify Path
    • 43. Multiply Strings
    • 606. Construct String from Binary Tree
    • 917. Reverse Only Letters
    • 929.Unique Email Addresses
    • Valid Anagram
    • Compare Strings
    • Anagrams
    • Longest Common Prefix
    • Implement strStr()
    • String to Integer (atoi)
Powered by GitBook
On this page
  1. BFS

Is Graph Bipartite? 07/30

Given an undirected graph, return true if and only if it is bipartite.

Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes iand j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.

  • graph will have length in range [1, 100].

  • graph[i] will contain integers in range [0, graph.length - 1].

  • graph[i] will not contain i or duplicate values.

  • The graph is undirected: if any element j is in graph[i], then i will be in graph[j].

Have you met this question in a real interview? Yes

Example

Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation: 
The graph looks like this:
0----1
|    |
|    |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation: 
The graph looks like this:
0----1
| \  |
|  \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
public class Solution {
    /**
     * @param graph: the given undirected graph
     * @return:  return true if and only if it is bipartite
     */
    public boolean isBipartite(int[][] graph) {
        // Write your code here
        
        int[] colors = new int[graph.length];
        
         Queue<Integer> queue = new LinkedList<>();
         
        for (int i = 0; i < graph.length ;i++ ){
            if(colors[i] != 0) continue;
            colors[i] = 1;
           
            queue.offer(i);
            
            while(!queue.isEmpty()){
                int t = queue.poll();
                for(int j = 0; j < graph[t].length;j++){
                    if(colors[graph[t][j]] == 0){
                        colors[graph[t][j]] = -1* colors[t];
                        queue.offer(graph[t][j]);
                    }else{
                        if(colors[graph[t][j]] == colors[t]){
                            return false;
                        }
                    }
                }
                
            }
            
        } 
        
        return true;
    
    }
}
PreviousSearch Graph Nodes 07/30NextWalls and Gates 07/30

Last updated 6 years ago

这道题博主在最开始做的时候,看了半天,愣是没弄懂输出数据的意思,博主开始以为给的是边,后来发现跟图对应不上,就懵逼了,后来是通过研究论坛上大神们的解法,才总算搞懂了题目的意思,原来输入数组中的graph[i],表示顶点i所有相邻的顶点,比如对于例子1来说,顶点0和顶点1,3相连,顶点1和顶点0,2相连,顶点2和结点1,3相连,顶点3和顶点0,2相连。这道题让我们验证给定的图是否是二分图,所谓,就是可以将图中的所有顶点分成两个不相交的集合,使得同一个集合的顶点不相连。为了验证是否有这样的两个不相交的集合存在,我们采用一种很机智的染色法,大体上的思路是要将相连的两个顶点染成不同的颜色,一旦在染的过程中发现有两连的两个顶点已经被染成相同的颜色,说明不是二分图。这里我们使用两种颜色,分别用1和-1来表示,初始时每个顶点用0表示未染色,然后遍历每一个顶点,迭代的解法,整体思路还是一样的,还是遍历整个顶点,如果未被染色,则先染色为1,然后使用BFS进行遍历,将当前顶点放入队列queue中,然后while循环queue不为空,取出队首元素,遍历其所有相邻的顶点,如果相邻顶点未被染色,则染成和当前顶点相反的颜色,然后把相邻顶点加入queue中,否则如果当前顶点和相邻顶点颜色相同,直接返回false,循环退出后返回true,参见代码如下::

二分图